Properties of non-rotating and rapidly rotating protoneutron stars

نویسندگان

  • K. Strobel
  • M. K. Weigel
چکیده

Properties of non-rotating and rapidly rotating protoneutron stars and neutron stars are investigated. Protoneutron stars are hot, lepton rich neutron stars which are formed in TypeII supernovae. The hot dense matter is described by a realistic equation of state which is obtained by extending a recent approach of Myers and Świa̧tecki to the nuclear mass formula. We investigate the properties of protoneutron stars and neutron stars at different evolutionary stages in order to emphasize the differences between very young and old neutron stars. The numerical calculations are performed by means of an exact description of rapid, uniform rotation in the framework of general relativity. We show that the minimal marginally stable protoneutron star mass is much higher than the corresponding minimum mass of a cold neutron star. The minimum gravitational (baryonic) mass of 0.89–1.13 M (0.95–1.29 M ) of a neutron star is therefore determined at the earliest stages of its evolution. We also show that the use of different temperature profiles in the envelope as well as different shapes of the neutrino sphere change the properties of protoneutron stars and hot neutron stars by up to 20 %. A preliminary analysis indicates that even the most massive protoneutron stars rotating with Kepler frequency are secularly stable. Under the assumption of conserved angular momentum and baryonic mass, the maximum rotational frequency of an evolved neutron star is determined by the Kepler frequency of the protoneutron star. We can thus derive a lower limit, Pmin ∼ 1.56 − 2.22ms, to the rotational period of young neutron stars with a canonical gravitational mass of 1.35M . This result furtherly supports the assumption that millisecond pulsars are accelerated due to accretion onto a cold neutron star.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid uniform rotation of protoneutron stars

Rapid uniform rotation of newborn neutron stars (protoneutron stars) is studied for a range of internal temperatures and entropies per baryon predicted by the existing numerical simulations. Calculations are performed using general relativistic equations of hydrostatic equilibrium of rotating, axially symmetric stars. Stability of rotating configurations with respect to mass shedding and the ax...

متن کامل

Nonaxisymmetric instabilities of neutron star with toroidal magnetic fields

Aims. Super magnetized neutron stars of ∼1015 G, magnetars, and magnetized protoneutron stars born after the magnetically-driven supernovae are likely to have very strong toroidal magnetic fields. Methods. Long-term, three-dimensional general relativistic magnetohydrodynamic simulations were performed to prepare isentropic neutron stars with toroidal magnetic fields in equilibrium as initial co...

متن کامل

Magnetar Spindown, Hyper-energetic Supernovae, & Gamma Ray Bursts

The Kelvin-Helmholtz cooling epoch, lasting tens of seconds after the birth of a neutron star in a successful core-collapse supernova, is accompanied by a neutrino-driven wind. For magnetar-strength (∼ 1015 G) large scale surface magnetic fields, this outflow is magnetically-dominated during the entire cooling epoch. Because the strong magnetic field forces the wind to co-rotate with the proton...

متن کامل

Quasithermal neutrinos from rotating protoneutron stars born during core collapse of massive stars

Rotating and magnetized protoneutron stars (PNSs) may drive relativistic magneto-centrifugally accelerated winds as they cool immediately after core collapse. The wind fluid near the star is composed of neutrons and protons, and the neutrons become relativistic while collisionally coupled with the ions. Here, we argue that the neutrons in the flow eventually undergo inelastic collisions around ...

متن کامل

Asymptotic analysis of high-frequency acoustic modes in rapidly rotating stars

Context. The asteroseismology of rapidly rotating pulsating stars is hindered by our poor knowledge of the effect of the rotation on the oscillation properties. Aims. Here we present an asymptotic analysis of high-frequency acoustic modes in rapidly rotating stars. Methods. We study the Hamiltonian dynamics of acoustic rays in uniformly rotating polytropic stars and show that the phase space st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999